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Chapter 1

Introduction

1.1 Hamiltonian Cycle Problem

Consider a standard eight by eight chessboard. Starting with a knight in an

arbitrary square, is it possible to move the knight (in the standard L-shaped

manner) so that it visits every square on the board exactly once?

Consider a dodecahedron. Pick an arbitrary face, and say we can tran-

sition to other faces sharing an edge. Is it possible, moving in this way, to

visit each face exactly once?

Given a group of people, some of whom are friends, some of whom are

not, is it possible to seat them about a table in such a manner that each

person will be sitting next to two friends?

These problems are all instances of a famous computational problem, the
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Hamiltonian Cycle Problem. The general setting for this problem is a formal

graph, which we elaborate in the next chapter.

We note briefly that this problem, besides its intrinsic interest to graph

theorists, is imbued with significance by its status as a member of the special

class of problems known as NP-complete problems. This is class of problems

is fundamental to the area of Complexity Theory. Given an algorithm for

a member of this class, or in particular an algorithm for efficiently solving

HCP problems, we could solve any NP-complete problem by converting it

(in a known, efficient way) to a HCP problem. Many practical problems are

members of the NP-class, and hence an algorithm for solving HCP would

solve many other problems as well, including but not limited to automati-

cally giving proofs of mathematical theorems (provided a proof of reasonable

length can be given), and breaking most known cryptography schemes.

Graphs are fundamentally discrete structures, and it is a general principle

that if mathematicians are presented with a discrete problem, they will try

to embed it in some continous context. In our particular case, Filar et al

[3] took the approach of embedding the Hamiltonian Cycle Problem within

the probabilistic framework of Markov Chains, and approach that has lead

to several interesting results and conjectures.

The main technical contribution of this thesis is a proof of one of these

conjectures of Filar et al. Specificly, they conjectured Hamiltonian Cycles

4



could be characterised in terms of the spectra of matrices with certain prop-

erties. This is surprising, because for general matrices it is difficult to make

statements about their entries based on their spectra, but by working in a

space well matched to the HCP, we are able to prove strong results, demon-

strating the power of this formulation.

In the chapter 2, we will give some background, explaining the underlying

concepts and notation of graphs, Markov chains and matrices. In chapter ??

we will discuss our main result, first introducing and summarising previous

work, then moving onto the proof. We will then briefly remark on some

consequences and future directions. In the final chapter
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Chapter 2

Background

2.1 Graphs

We begin with the standard definition of a graph:

Definition 1. A graph is a an ordered pair (V,E) with E ⊂ V 2. The

elements of V are called the vertices (singular vertex), and the elements of

E are called the edges.

Intuitively, we think of a graph as being a set of entities (the elements of

V ), and some sort of ‘connection’ between them. We often illustrate graphs

using dots, circles, or some other small geometric figure for vertices; and

using curves, originating and terminating on vertices, for edges. If we wish

to distinguish vertices on some basis other than their connections, we label
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56

Figure 2.1: Graph with 6 vertices and 9 edges.

them, generally with the integers.

Generally we will denote a graph by G = (V,E). Also, sometimes we will

write (u, v) ∈ G when we really mean (u, v) ∈ E.

The least complex variety of graphs are simple graphs. In these graphs,

there are no edges of the form (v, v), referred to as loops ; and there is no

distinction made between the edges (v, u) and (u, v), we say the graph is

undirected. These restrictions imply an obvious extension to directed graphs,

graphs in which we distinguish between (v, u) and (u, v), interpreting the edge

as having a direction going from the vertex v to vertex u. Diagrammatically,

we depict this by adding arrows to the curves we use to depict edges.

A further extension is to associate with each edge (v, u) a real number

w, referred to as the weight. As a motivating example, consider a electricity

grid, modelled as a graph by letting substations be modelled as vertices and

powerlines modelled by edges. In this case, the weight of an edge might

represent the carrying capacity of the cable it represents.
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Figure 2.2: In red: the cycle 1, 2, 5, 6

1 2
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56

Figure 2.3: In red: the cycle 1, 2, 5, 3, 4, 6 is Hamiltonian

Let us define a few more terms. A walk is a sequence of not necessarily

distinct vertices L0, L1, L2, . . . , Lk such each (Li, Li+1) ∈ E, that is, there

is an edge between the successive vertices in the sequence. A path is walk

where all the vertices are distinct. A cycle is a sequence of distinct vertices

C0, C1, . . . , Cn that is a path, and in addition (Cn, C0) is an edge.

A Hamiltonian cycle is a cycle that visits every vertex in a graph. If there

is a Hamiltonian cycle in a graph, then we say the graph itself is Hamiltonian

as well; and similiarly if no Hamiltonian cycle can be given, we say the graph

itself is non-Hamiltonian.

The adjacency matrix of a graph with N vertices is a N × N matrix
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defined by:

Aij =


1 if (i, j) ∈ E

0 otherwise .

(2.1)

As an example, the adjacency matrix of the undirected graph in Figure
2.1 is:


0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 1 0
1 0 1 0 0 1
0 1 1 0 0 1
1 0 0 1 1 0

 .

2.2 Markov Processes

A Markov Chain is a formalisation of a process occurring over time which

in some sense only depends on its present state. An example would be a

game of snakes and ladders: it doesn’t matter if we got to square 12 by

rolling 6 twice or 4 three times, the probability of going to square 16 is the

same. A bit more formally, we say that the probability of a future state

is conditionally independent given the present state. In notation, we have

some finite state space S, we and we have a sequence of random variables

X0, X1, . . . , Xn, interpreting the random variable Xt ∈ S as “the state at

time t”. The Markov property is:

Pr(Xn+1 = xn+1|Xn = xn, . . . , X0 = x0) = Pr(Xn+1 = xn+1|Xn = xn).

(2.2)

9



We also generally want that the specific time doesn’t matter, we say that the

process is stationary :

Pr(Xn+1 = xn+1|Xn = xn) = Pr(Xm+1 = xm+1|Xm = xm) ∀m,n. (2.3)

A finite markov process can naturally be represented by a matrix, called

the transition matrix. Given that we have a finite number of states, we might

as well represent them by the integers 1, ..., N . Then we can define a matrix

P by pij = Pr(Xt+1 = j|Xt = i), where we are using the Markov Chain

theory convention that capitals represent matrices and the subscripted row

vectors and entries are written in lower case boldface. This is a very nice

representation, because if we define a vector xt by (xt)i = Pr(Xt = i), then we

have xt+1 = Pxt. In fact this matrix represents essentially all the information

about the Markov Chain, and we will focus mainly on these matrices.

The probablistic origins of the transition matrix lead to the simple but

useful property: ∑
i

pij = 1 ∀i.

Or, more compactly:

P1 = 1.

where 1 is the all ones vector. This property is referred to as the stochastic

property, and we also say that P is a stochastic matrix. Given a stochastic

matrix, we can interpret it as defining a Markov chain, and we will generally

proceed in this direction, from a stochastic matrix to a Markov chain.

We will now describe the link between Markov chains and graphs. Given
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a graph, consider its adjacency matrix A. We can use this matrix to define a

natural class of stochastic matrices, which satisfy:

P ≤ A

P1 = 1.

or more explicitly:

N∑
i=1

pij = 1 ∀j

pij ∈ [0, 1] ∀i, j

pij = 0 if (i, j) /∈ G.

We say that the space of such stochastic matrices is the space of matrices

induced by the graph. We will sometimes denote this space by P(G).

We can naturally visualise a Markov chain where the states are the ver-

tices, and the actions correspond to directed, weighted edges. Let us consider

an example, again on the graph in Figure 2.1. A possible matrix induced by

this graph might be:


0 0.5 0 0 0 0.5
0 0 0.5 0 0.5 0
0 0 0 0.5 0.5 0

0.5 0 0 0 0 0.5
0 0.5 0.5 0 0 0

0.5 0 0 0.5 0 0

 .

Which has the natural visualisation as Figure 2.4.

An important special class of stochastic matrices are the doubly-stochastic
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Figure 2.4: Visualisation of a stochastic matrix induced by a graph

matrices. In addition to satisfying P1 = 1, they satisfy the additional con-

straint:

1TP = 1T .

Or, alternatively:
N∑
j=1

pij = 1 ∀i.

Note that the previously given matrix also satisfies this constraint. Again,

we may consider those doubly stochastic P that satisfy P ≤ A where A is

the adjacency matrix of a graph G, and we will refer to these as the doubly-

stochastic matrices induced by a graph, sometimes denoting them by DS(G).

These doubly-stochastic matrices are of interest because they have an el-

egant decomposition into permutation matrices, which are doubly-stochastic

matrices with only zero-one entries, which intuitively do not “randomize”.

The theorem guaranteeing this decomposition exists is known as the Birkhoff-

von Neumann theorem, or just the Birkhoff theorem, an exposition and proof

of which can be found in most linear algebra texts covering non-negative ma-

trices [1].

Theorem 1. Given a doubly stochastic matrix P, there exists αi ∈ [0, 1] and
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permutation matrices Bi such that:

∑
i

αi = 1

∑
i

αiBi = P.

Another way of stating this theorem is to say that “the doubly stochastic

matrices are the convex hull of the permutation matrices”.

Important to our case is that if the matrix P is in the set of doubly-

stochastic matrices induced by a graph, that is, P ∈ DS(G), then each of

the Bi are also in DS(G).

There is also a natural graphical interpretation of this result, which will

make clear the link to Hamiltonian cycles. The permutation matrices can

be interpreted as directed cycle covers. If we visualise these matrices as

previously described, we can see that the graph is decomposed into a set of

directed cycles. It is now natural to perceive the graph of a doubly-stochastic

matrix as a weighted sum of cycle covers.

Again, an example will prove illuminating. Consider again our graph

from Figure 2.1, and the doubly-stochastic matrix we previously gave. This

matrix can be decomposed as:
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0 0.5 0 0 0 0.5
0 0 0.5 0 0.5 0
0 0 0 0.5 0.5 0

0.5 0 0 0 0 0.5
0 0.5 0.5 0 0 0

0.5 0 0 0.5 0 0



= 0.5


0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

 + 0.5


0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0

 .

which in turn gives the visualisation of Figure 2.5.

The attentive reader might notice that the graph of the second permuta-

tion is a Hamiltonian cycle. We call a permutation matrix that corresponds

to a Hamiltonian cycle in this way a Hamiltonian matrix. That Hamiltonian

matrices are included in the continuous domain of doubly-stochastic matri-

ces is what allows the our embedding. If we could find a simple condition

that characterised Hamiltonian matrices, then we could hopefully use it as a

guide to some continuous optimisation procedure, moving through the space

of doubly-stochastic matrices to a Hamiltonian cycle.

The principle contribution of this thesis will be a proof of a characteri-

sation of Hamiltonian matrices in terms of their spectra. This will lead to a

continuous, differentiable objective function that we can optimise to try and

find Hamiltonian cycles in a graph. Before we get our hopes up too much, it

turns out that this objective function is non-linear and non-convex, making

such a scheme impractical in general; but nonetheless this characterisation

of Hamiltonian cycles in continuous terms is interesting, and we hope it will
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Figure 2.5: Visualisation of a decomposition of a stochastic matrix

lead to further insight into the general problem.

2.3 Vector and Matrix Norms

2.3.1 p-norms

Given a N dimensional vector x, we can define its p-norm, ||x||p, is defined

by:

||x||p = (
N∑
i=1

|x|p)
1
p . (2.4)

The most common norms are the 2-norm, the 1-norm and the ∞-norm.

The 2-norm is just the ordinary euclidean norm. The 1-norm is sometimes

referred to as the ‘manhattan’ norm 1. The ∞-norm is also known as the

‘maximum’ norm, because it equals the magnitude of the largest element of

the vector, indeed this is usually taken as its definition, though one can see

easily enough that taking the limit as p goes to infinity yields the same result.

We will mainly use the first two norms, the 2-norm and the 1-norm.

We will use a few useful inequalities relating different p-norms.

1The explanation for this terminology being that the 1-norm is the distance one would
have to travel between two points if restricted to a rectangular grid, resembling the streets
of Manhattan
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Lemma 1. For any N-dimensional vector x

||x||2 ≤ ||x1||.

Proof. As we are only have non-negative terms, it suffices that the set of

inequalities follow inclusions in the set of terms for each norm.

||x||21 = (
N∑
i=1

|xi|)2

=
N∑
i=1

N∑
i=1

|xi||xj|

=
N∑
i=1

|xi|2 +
∑
i 6=j

|xi||xj|

≥
N∑
i=1

|xi|2

= ||x||22.

Note that if we desire equality in above, we will need that
∑

i 6=j |xi||xj| =

0. This will obtain only if there is exactly one non-zero entry in x.

Lemma 2. Let N ∈ N+ and λk = e
2πik
N , k = 1, . . . , N . Then

N∏
k=1

λk = ±1.

Proof. Intuitively, this is the case because all the complex factors come in

conjugate pairs, because they are the roots of a equation with real coefficients,
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1− λN = 0. Formally we evaluate the product as a sum in the exponent:

N∏
k=1

e
2πik
N

=e
2πi
N

∑N
k=1 k

=e
2πi
N

1
2
N(N+1)

=eπi(N+1)

=± 1.

2.3.2 Frobenius norm

Just as we can define norms for vectors, we can also define them for matrices.

Because matrices have additional structure beyond that of vectors, we can

define more kinds of norms of matrices, that reflect this structure to different

extents. One of the most widely used, and the one we will use here, is the

Frobenius norm, defined in terms of the entries of a matrix. For an M ×N

matrix A, we write:

||A||F =

√√√√ M∑
i=1

N∑
j=1

A2
ij. (2.5)
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While this might not seem to capture much of interest about a matrix, we

can rewrite it in the following way:

||A||F =
√

tr(AAT )

=

min{M,N}∑
i=1

σ2
i .

Where the σi are the much studied singular values of A, defined as the square

roots of the eigenvalues of AAT .

2.4 Non-negative Matrix Theory

The theory of general non-negative matrices in based on the celebrated

Perron-Frobenius theorem, which in its simplest form is:

Theorem 2. Suppose A is a non-negative, irreducible matrix. Then there

is a positive, real number r that is an eigenvalue of A, such that for all

eigenvalues λ, |λ| ≤ r, and the associated eigenvector of r is non-negative.

Of course, if we are working in the domain of stochastic matrices, this

does not tell us anything we aren’t already assuming: the r is just 1, by the

definition of stochasticicity. Nonetheless the general theory that has been

worked out on basis of this theorem will turn out to be useful to us.

We now define a few terms. A stochastic (or more generally non-negative)

matrix is said to be irreducible if for all i, j, there exists some k such that

(P k)ij > 0, that is to say, there is some non-zero probability of transitioning

between every pair of states eventually. The period of a stochastic matrix is

defined to be h = gcd{k | (P k)ii > 0 ∀i}.
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With these definitions we can state the following theorem of non-negative

matrices, specialised to our stochastic case:

Theorem 3. Let A be a irreducible stochastic matrix with period h. Then A

has exactly h eigenvalues located on the boundary of the unit disc, and these

all take the form e
2πin
h .

Note that this is tantalisingly close to the result we are seeking. The

eigenvalues mentioned are roots of unity, just as in the condition of our

conjecture. The implication in the theorem goes both directions, so the

theorem allows us to say:

Corrolary 1. Suppose A is a N×N irreducible stochastic matrix with eigen-

values e
2πik
N k = 1, . . . , N . Then A has period N .

It would remain then to connect the period to hamiltonicity. This seems

reasonable: the period if defined in terms of cyclic walks. One way of stating

the preceding corrollary might be “if a stochastic matrix has eigenvalues the

roots of 1 − λN , then all the cyclic walks have lengths multiples of N”. It

seems fairly intuitive that this is equivalent to hamiltonicity, but proving it

turns out to be subtle. Seneta[?] uses a complex combinatorial argument to

establish this result, and though this approach can be simplified somewhat

(see appendix), it stills seems somehow unnecessarily complex. In the next

section, we will give a proof that avoids the need for combinatorial arguments,

and instead uses linear algebraic notions.

Nonetheless, this theorem imposes a restriction on the possible forms the

eigenvalues on the boundary of the unit disc take: namely that they must

consist of roots of unity of the same order. For example, there is no way to
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have the only the eigenvalues e
2πi
7 , e

2πi
3 on the boundary. This mean we will

be able to concluded a nice corrolary of our main result later.

2.5 History of the Hamiltonian Cycle Prob-

lem

Possibly the first well-known problem of the Hamiltonian-cycle type is the

Knight’s Tour problem. This problem asks: given a chessboard and a knight

on it, is it possible, moving the knight in the standard L-shaped way, to

have the knight visit each square on the board exactly once. It is easy to

convert this to an explicitly graph theoretic problem: one has a vertex for

each square, and edges between those vertices whose corresponding squares

could be reached in a single knight move.

This problem was studied by eminent Leonard Euler, who gave a num-

ber of solutions to the puzzle, described some techniques for constructing

new tours from old, gave a somewhat inefficient scheme for attempting to

extend a path to a tour, and another procedure for attempting to convert a

Hamiltonian path to a Hamiltonian cycle. See [5] for more details.

One of the first effective heuristics for solving the Knight’s Tour was

Warnsdorff’s Rule, named for H. C. von Warnsdorff. The heurstic simply

proposes that given a path, or simply a starting point, one should select the

next vertex in the cycle to minimise the number of usable neighbours that

vertex has. This rule turns out to be useful in general, and on a surprisingly

large set of graphs this rule can find a Hamiltonian cycle in time linear in
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the number of vertices in the graph ??.

The next famous historical Hamiltonian cycle type problem, and the one

that gave the problem its name, is the Icosian Game devised by William

Rowan Hamilton.
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Chapter 3

Spectral Characterisation of

Hamiltonian Matrices

?? In this section we will present our main result, the proof of a conjecture

of Ejov and Filar. We begin by stating the result:

Theorem 4. Suppose P is a N × N doubly stochastic matrix induced by a

graph, and e
2πi
N is an eigenvalue of P . Then P corresponds to a Hamiltonian

cycle in the graph.

This strong characterisation given only a single eigenvalue of the matrix

is surprising. Our proof will build on the structural theory of non-negative

matrices. In process we will establish a extension of Lemma 2.3 from [?,

p. 52], a that could formerly only be obtained by combinatorial arguments.

We will establish this lemma in a novel, using only tools from linear alge-

bra. Indeed, we arrived at our proof of this lemma independently of Seneta,

only discovering the proof in the referenced work after our success with our

approach.

22



3.1 Previous Work

In this section we will give a brief summary of the relevant material from [?].

In particular, the authors prove the following fact.

Lemma 3. Suppose P is a N ×N permutation. Then P is a Hamiltonian if

and only if its characteristic equation is:

1− λN = 0.

This fact was previously known to experts in Markov Chains, but a proof

is difficult to find written down, so we include the reference for the sake of

completeness.

Note that this condition is equivalent to restricting the eigenvalues to:

λk = e
2πik
N , k = 0, . . . , N − 1.

Ejov and Filar made the observation that there did not seem to be any

non-Hamiltonian, doubly stochastic matrices with these eigenvalues, even if

the restriction to zero-one entries was removed. Consequently they conjec-

tured:

Conjecture 1. Let P be a N × N doubly-stochastic matrix. Then P is

Hamiltonian if and only if it has the characteristic equation

1− λN = 0.
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Furthermore, they observed that even if the hypothesis was weakened

to only requiring a single eigenvalue on the boundary of the unit disc, the

conclusion would still hold.

Conjecture 2. Let P be a N × N doubly-stochastic matrix. Then P is

Hamiltonian if and only if it has e
2πi
N as an eigenvalue.

This conjecture is noteworthy, in that it makes a strong statement about

the entries of a matrix in terms of its eigenvalues, whereas most theorems

make statements about the eigenvalues in terms of the entries. In general

matrices very little can be said about the entries in terms of the eigenval-

ues, but in the doubly-stochastic context we are able to make this strong

statement.

First we will discuss some preliminaries, then move on to the main argu-

ment.

3.2 Spectral Characterisation of Permutation

Matrices

In this section we will prove the following lemma, which will be the main

ingredient in establishing [1].

Lemma 4. Suppose P is an N × N doubly stochastic matrix, and all the

eigenvalues λi of P satisfy |λi| = 1. Then pij ∈ {0, 1} for all elements pij of

P .

Proof. We will prove this theorem using vector and matrix norms. First,

we will give a condition that will ensure pij ∈ {0, 1} ∀i, j. Recall that the
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entries of doubly stochastic matrices P satisfy the equations

∀i, j : 0 ≤ pij ≤ 1

∀i :
N∑
j=1

pij = 1.

The above imply that the 1-norm of each row vector pi satisfies

||pi||1 = 1.

Now, we have the norm inequality for each row vector:

||pi||2 ≤ ||pi||1 = 1, (3.1)

and equality holds only if the entries of pi are all zero-one.

We now consider the Frobenius norm of the matrix. The Frobenius norm

is the entry-wise 2-norm of the matrix, and so we have

||P ||2F =
N∑
i=1

N∑
j=1

|pij|2 =
N∑
i=1

||pi||22 ≤ N.

where the inequality comes from [??], and equality holds if and only if we all

the entries are zero-one.

The Frobenius norm can also be expressed as:

||P ||2F = tr(PP T ) =
N∑
i=1

σ2
i .

Where the σi are the much studied singular values of the underlying matrix
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P , the square roots of the eigenvalues of PP T . Here we will not need any

property of these except that they are real and non-negative.

Because P is a doubly stochastic matrix, so is its tranpose; and as the

product of two doubly stochastic matrices is doubly stochastic, so PP T is

doubly stochastic. Hence by the Gershgorin Circle Theorem, we have a bound

on the magnitude of the eigenvalues of PP T , namely:

σ2
i ≤ 1 ∀i.

We wish to ensure pij ∈ {0, 1}, so by [3.2] we will need that ||P ||2F = N =∑
i σ

2
i , which can only be achieved if we equality in the previous, that is:

σ2
i = 1 ∀i.

Now that we have connected the determinicty of P to the eigenvalues of

PP T , we will need a relationship between the singular values and the original

eigenvalues. By standard linear algebra, we can deduce that

N∏
i=1

σ2
i = det(PP T ) = det(P ) det(P T ) = [det(P )]2 =

N∏
i=1

λ2i .

Now we wish to exploit the assumption of our lemma, that all the eigenvalues

will lie on the unit disc. Because the σ2
i are real and non-negative, we may

write ∏
i

σ2
i =

∏
i

|σ2
i | = |

∏
i

σ2
i | = |

∏
i

λ2i | =
∏
i

|λi|2 = 1.
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To recap, the location of the eigenvalues of P on the boundary of the

unit disc cause all the singular values σ2
i to equal one, which in turn forces

the Frobenius norm to be N , equalling the 1-norm and hence making P a

zero-one matrix.

We also note that this lemma establishes slightly more than we require,

in that it makes strong statements about not only matrices with the

3.3 Single Eigenvalue Characterisation

We now turn to the conjecture that a matrix is Hamiltonian if and only

if it has the particular eigenvalue e
2πi
N . That is, the presence of this single

eigenvalue is enough to ennsure that all the other Nth roots of unity are

in the spectrum, and that the matrix is Hamiltonian. For this, we need to

exploit the Perron-Frobenius theorem introduced in the previous chapter.

Recall that this theorem gives a strong restriction on what values the

eigenvalues might take on the boundary of the unit disc. In particular, it

says that eigenvalues on the boundary of the unit disc must all be roots

of unity of the same order, and that all the roots of unity of this order

must also be present. This implies that if the root e
2πi
N is present, then

all e
2πik
N , k = 1, . . . , N must be present. This reduces the single eigenvalue

characterisation to the result of the previous.

However, we first need to address a technical concern: the Perron-Frobenius

theorem is stated for irreducible matrices, while we would like our result to

apply in general. We can resolve this difficulty by a partitioning argument.

Because our matrix is required to be doubly-stochastic, we can find a per-
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mutation C that transforms P to a block upper triangular form:

CPC−1 =



A1 . . . . . . . . .

0 A2 . . . . . .

0 0
. . .

...

0 0 0 Am


,

where each of the A1 is an irreducible matrix. We may then apply the Perron-

Frobenius theorem to each of these blocks. If the matrix is reducible and there

is more than one distinct block, then the block must of be size M×M , where

M strictly less than N . Suppose for contradictions sake that the P had e
2πi
N

as an eigenvalue, and P is reducible. Then one of these blocks An which

dimension strictly less than P must be the source of this eigenvalue. As this

An is irreducible, by the Perron-Frobenius theorem it must have all the roots

of 1 − λN as eigenvalues. But there are N of these, and an M ×M matrix

must have M strictly less than N eigenvalues. Hence we have a contradiction,

so det(P − e 2πi
N I) = 0 implies that the P is irreducible, and we are done.

The reason we might be interested in this single eigenvalue characterisa-

tion as it allows us to formulate the problem of seeking a Hamiltonian cycle

in a graph as an optimization problem, with the doubly-stochastic graph

conditions forming the constraints, and an eigenvalue condition taking the
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role of the objective. We can write:

minimise [det(P − e
2πi
N I)]2

subject to P1 = 1

1TP = 1T

0 ≤ P ≤ A.

Where A is the adjacency matrix of the underlying graph.

The constraints are linear, which makes them ideal for an optimization

approach. However, the objective function is highly non-linear and difficult

to evaluate, in general it requires the evaluation of the adjugate of P , which

is computationally expensive. Nonetheless, there is hope that some of this

particular difficulty can be overcome by use of sophisticated linear algebraic

algorithms, and this represents a possible direction for further research. How-

ever, we should note that the issue of non-global optima is likely unavoidable,

owing to the underlying NP-completeness of the problem.

3.4 Eigenvectors of Permutation Matrices

In this section we will investigate the eigenvectors associated with the eigen-

values of permutation matrices. As discussed previously, the eigenvalues of a

Hamiltonian matrix are the roots of 1− λN . It turns out the corresponding

eigenvectors also take a particular form.
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